Professor Jennifer Kraemer (Early Childhood Education) and I recently collaborated on a lesson plan to use 3D printing in the ECE classroom. Specifically, the project uses the Free Universal Construction Kit, a set of printable interfaces that bridge 10 common proprietary building systems including Lego, Lincoln Logs, Tinkertoys and K’NEX.
Max Mahoney (Professor of Chemistry) had an idea about using the Innovation Center’s 3D printer to create some manipulatives to help demonstrate to chemistry students concepts of atomic bonding. Something like this:
Here’s what Max has to say about it:
The nature of chemical bonds is rooted in complex physical forces. These forces result in atoms being both attracted and held apart at a specific distance. We hope to develop a hands-on model for students, which conveys this important chemical information. Currently available designs of molecular model kits allow the construction of complex molecules in 3 dimensions, but do a poor job of representing the exact nature of each chemical bond. Our goal is to create a model that will allow students to feel the chemical bond and see the bond lengths. The recently discovered ‘inverter magnets’ have the property of both repelling and attracting each other, so that the atoms seem to hold each other in a ‘tractor beam.’ The distance they are separated represents the bond length.
Initial designs will focus on demonstrating the principle of bond length and bond vibration between two atoms. Enclosures for the inverter magnets are currently being 3D printed and their shapes optimized. These models use strong neodymium magnets so that students can feel the significant push and pull of the two ‘atoms.’ Magnets of different strengths will result in varying degrees of bond strengths (and vibrational rates), which can be measured by the student using force gauges.
Subsequent designs of these models will demonstrate each atom’s unique bonding pattern. Specialized cases for the inverter magnets will be 3D printed to mimic an atom’s ability to form multiple bonds.
The key aspect of these models is that the magnets do not touch and can be made to vibrate at a specific frequency so that the model is dynamic. Currently, students are taught these concepts with either static models, or with video animation. The strength of our model lies in the ability for students see and feel tangible objects displaying atomic principles on a macro scale.
We did some design talking/drawing:
Max went home, bought some magnets, taught himself SketchUp, and has printed a few different prototypes.
Sean Fannon (Professor of Psychology and we think coiner of the phrase “arduineuron”) and I have been kicking around ideas for a project consisting of 3D printed neurons and LEDs, all controlled by Arduino. It’s early stage, but I was able to get a little prototype up, using this model of a neuron (CC BY-NC-SA by speborde) and this Arduino sketch/schematic from spikee.io. The neuron starts firing (indicated by the pulsing of the LED) as the potentiometer is rolled up.
The general idea is to create an interactive network of these for use in the Psychology classroom.
Using the prototype above as a starting point, Sean and I sat down to further define the project.
Next steps include securing some electronics, and designing and printing some snap-together dendrite interfaces. I’m also in conversations with Jennifer Kraemer (Professor of Early Childhood Education) to see if we can find a way to also demonstrate the concept of myelination, which Jennifer talks about in her Child Development courses. This neuron project might also come into play. Interdisciplinary goodness!
Spent the evening or May 7th at a recognition event for donors to the college. The Innovation Center has been a direct recipient of Falcon Grant monies – that’s how we got the Printrbot – and an indirect recipient in partnership with Geosciences, enabling us to upgrade to a better quadcopter for dolookdown.org. I had the opportunity to explain the various projects, and to talk to Foundation members and donors about our plans to remake the IC as a makerspace. Several seem very excited about the idea!
4. Library Lyna
Our Mission – To host the largest collection of high quality educational 3D models to foster learning of the blind and visually impaired.
Students, faculty and staff gathered for a presentation about 3D printing. You can check out the slides here. Lots of enthusiasm in the room, and lots of support for a makerspace.